Python学习

第一个Python程序

>>> 100+200
300

如果要让Python打印出指定的文字,可以用print()函数,然后把希望打印的文字用单引号或者双引号括起来,但不能混用单引号和双引号:
第一个hello world!

>>> print('hello, world')
hello, world

这种用单引号或者双引号括起来的文本在程序中叫字符串,今后我们还会经常遇到。

最后,用exit()退出Python,我们的第一个Python程序完成!唯一的缺憾是没有保存下来,下次运行时还要再输入一遍代码。

输入和输出

用print()在括号中加上字符串,就可以向屏幕上输出指定的文字。比如输出’hello, world’,用代码实现如下:

>>> print('hello, world')

输出

print()函数也可以接受多个字符串,用逗号“,”隔开,就可以连成一串输出:

>>> print('The quick brown fox', 'jumps over', 'the lazy dog')
The quick brown fox jumps over the lazy dog

print()也可以打印整数,或者计算结果:

>>> print(300)
300
>>> print(100 + 200)
300

因此,我们可以把计算100 + 200的结果打印得更漂亮一点:

>>> print('100 + 200 =', 100 + 200)
100 + 200 = 300

输入

现在,你已经可以用print()输出你想要的结果了。但是,如果要让用户从电脑输入一些字符怎么办?Python提供了一个input(),可以让用户输入字符串,并存放到一个变量里。比如输入用户的名字:

>>> name = input()
Michael
name = input()
print('hello,', name)

数据类型和变量

数据类型

整数 浮点数 字符串

字符串:’I\’m \”OK\”!’表示的字符串内容是:I’m “OK”!

布尔值

布尔值和布尔代数的表示完全一致,一个布尔值只有True、False两种值,要么是True,要么是False,在Python中,可以直接用True、False表示布尔值(请注意大小写),也可以通过布尔运算计算出来:

>>> True
True
>>> False
False
>>> 3 > 2
True
>>> 3 > 5
False

布尔值可以用and、or和not运算

>>> True and True
True
>>> True and False
False
>>> False and False
False
>>> 5 > 3 and 3 > 1
True

not运算是非运算,它是一个单目运算符,把True变成False,False变成True:

>>> not True
False
>>> not False
True
>>> not 1 > 2
True

布尔值经常用在条件判断中,比如:

if age >= 18:
print('adult')
else:
print('teenager')

常量

所谓常量就是不能变的变量,比如常用的数学常数π就是一个常量。在Python中,通常用全部大写的变量名表示常量:

PI = 3.14159265359

最后解释一下整数的除法为什么也是精确的。在Python中,有两种除法,一种除法是/:

>>> 10 / 3
3.3333333333333335

除法计算结果是浮点数,即使是两个整数恰好整除,结果也是浮点数:

>>> 9 / 3
3.0

还有一种除法是//,称为地板除,两个整数的除法仍然是整数:

>>> 10 // 3
3

Python的字符串

>>> print('包含中文的str')
包含中文的str

对于单个字符的编码,Python提供了ord()函数获取字符的整数表示,chr()函数把编码转换为对应的字符:

>>> ord('A')
65
>>> ord('中')
20013
>>> chr(66)
'B'
>>> chr(25991)
'文'

要计算str包含多少个字符,可以用len()函数:

>>> len('ABC')
3
>>> len('中文')
2

len()函数计算的是str的字符数,如果换成bytes,len()函数就计算字节数:

>>> len(b'ABC')
3
>>> len(b'\xe4\xb8\xad\xe6\x96\x87')
6
>>> len('中文'.encode('utf-8'))
6

格式化

在Python中,采用的格式化方式和C语言是一致的,用%实现,举例如下:

>>> 'Hello, %s' % 'world'
'Hello, world'
>>> 'Hi, %s, you have $%d.' % ('Michael', 1000000)
'Hi, Michael, you have $1000000.'

如果你不太确定应该用什么,%s永远起作用,它会把任何数据类型转换为字符串:

>>> 'Age: %s. Gender: %s' % (25, True)
'Age: 25. Gender: True'

有些时候,字符串里面的%是一个普通字符怎么办?这个时候就需要转义,用%%来表示一个%:

>>> 'growth rate: %d %%' % 7
'growth rate: 7 %'

使用list和tuple

list

Python内置的一种数据类型是列表:list。list是一种有序的集合,可以随时添加和删除其中的元素。

比如,列出班里所有同学的名字,就可以用一个list表示:

>>> classmates = ['Michael', 'Bob', 'Tracy']
>>> classmates
['Michael', 'Bob', 'Tracy']

变量classmates就是一个list。用len()函数可以获得list元素的个数:

>>> len(classmates)
3

用索引来访问list中每一个位置的元素,记得索引是从0开始的:

>>> classmates[0]
'Michael'
>>> classmates[1]
'Bob'
>>> classmates[2]
'Tracy'
>>> classmates[3]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
```</module></stdin>

如果要取最后一个元素,除了计算索引位置外,还可以用-1做索引,直接获取最后一个元素:

```python
>>> classmates[-1]
'Tracy'

以此类推,可以获取倒数第2个、倒数第3个:

>>> classmates[-2]
'Bob'
>>> classmates[-3]
'Michael'
>>> classmates[-4]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: list index out of range
```</module></stdin>

list是一个可变的有序表,所以,可以往list中追加元素到末尾:
```python
>>> classmates.append('Adam')
>>> classmates
['Michael', 'Bob', 'Tracy', 'Adam']

要删除list末尾的元素,用pop()方法:

>>> classmates.pop()
'Adam'
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy']

也可以把元素插入到指定的位置,比如索引号为1的位置:

>>> classmates.insert(1, 'Jack')
>>> classmates
['Michael', 'Jack', 'Bob', 'Tracy', 'Adam']

list元素也可以是另一个list,比如:

>>> s = ['python', 'java', ['asp', 'php'], 'scheme']
>>> len(s)
4

tuple

另一种有序列表叫元组:tuple。tuple和list非常类似,但是tuple一旦初始化就不能修改,比如同样是列出同学的名字:

>>> classmates = ('Michael', 'Bob', 'Tracy')

现在,classmates这个tuple不能变了,它也没有append(),insert()这样的方法。其他获取元素的方法和list是一样的,你可以正常地使用classmates[0],classmates[-1],但不能赋值成另外的元素。

>>> t = (1, 2)
>>> t
(1, 2)

如果要定义一个空的tuple,可以写成():

>>> t = ()
>>> t
()

但是,要定义一个只有1个元素的tuple,如果你这么定义:

>>> t = (1)
>>> t
1

定义的不是tuple,是1这个数!这是因为括号()既可以表示tuple,又可以表示数学公式中的小括号,这就产生了歧义,因此,Python规定,这种情况下,按小括号进行计算,计算结果自然是1。

>>> t = (1,)
>>> t
(1,)

Python在显示只有1个元素的tuple时,也会加一个逗号,,以免你误解成数学计算意义上的括号。

最后来看一个“可变的”tuple:

>>> t = ('a', 'b', ['A', 'B'])
>>> t[2][0] = 'X'
>>> t[2][1] = 'Y'
>>> t
('a', 'b', ['X', 'Y'])

条件判断

age = 20
if age >= 18:
print('your age is', age)
print('adult')

当然上面的判断是很粗略的,完全可以用elif做更细致的判断:

age = 3
if age >= 18:
print('adult')
elif age >= 6:
print('teenager')
else:
print('kid')

循环

Python的循环有两种,一种是for…in循环,依次把list或tuple中的每个元素迭代出来,看例子:


names = ['Michael', 'Bob', 'Tracy'] for name in names: print(name)

再比如我们想计算1-10的整数之和,可以用一个sum变量做累加:

sum = 0
for x in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:
sum = sum + x
print(sum)

如果要计算1-100的整数之和,从1写到100有点困难,幸好Python提供一个range()函数,可以生成一个整数序列,再通过list()函数可以转换为list。比如range(5)生成的序列是从0开始小于5的整数:

sum = 0
for x in range(101):
sum = sum + x
print(sum)

使用dict和set

Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。

举个例子,假设要根据同学的名字查找对应的成绩,如果用list实现,需要两个list:

names = ['Michael', 'Bob', 'Tracy']
scores = [95, 75, 85]

``
如果用dict实现,只需要一个“名字”-“成绩”的对照表,直接根据名字查找成绩,无论这个表有多大,查找速度都不会变慢。用Python写一个dict如下:
```python
>>> d = {'Michael': 95, 'Bob': 75, 'Tracy': 85}
>>> d['Michael']
95

把数据放入dict的方法,除了初始化时指定外,还可以通过key放入:

>>> d['Adam'] = 67
>>> d['Adam']
67

由于一个key只能对应一个value,所以,多次对一个key放入value,后面的值会把前面的值冲掉:

>>> d['Jack'] = 90
>>> d['Jack']
90
>>> d['Jack'] = 88
>>> d['Jack']
88

要避免key不存在的错误,有两种办法,一是通过in判断key是否存在:

>>> 'Thomas' in d
False

要删除一个key,用pop(key)方法,对应的value也会从dict中删除:

>>> d.pop('Bob')
75
>>> d
{'Michael': 95, 'Tracy': 85}

和list比较,dict有以下几个特点:

1.查找和插入的速度极快,不会随着key的增加而增加;
2.需要占用大量的内存,内存浪费多。
而list相反:

1.查找和插入的时间随着元素的增加而增加;
2.占用空间小,浪费内存很少。

set

set和dict类似,也是一组key的集合,但不存储value。由于key不能重复,所以,在set中,没有重复的key。

要创建一个set,需要提供一个list作为输入集合:

>>> s = set([1, 2, 3])
>>> s
{1, 2, 3}

注意,传入的参数[1, 2, 3]是一个list,而显示的{1, 2, 3}只是告诉你这个set内部有1,2,3这3个元素,显示的顺序也不表示set是有序的。。

重复元素在set中自动被过滤:

>>> s = set([1, 1, 2, 2, 3, 3])
>>> s
{1, 2, 3}

通过add(key)方法可以添加元素到set中,可以重复添加,但不会有效果:

>>> s.add(4)
>>> s
{1, 2, 3, 4}
>>> s.add(4)
>>> s
{1, 2, 3, 4}

通过remove(key)方法可以删除元素:

>>> s.remove(4)
>>> s
{1, 2, 3}

set可以看成数学意义上的无序和无重复元素的集合,因此,两个set可以做数学意义上的交集、并集等操作:

>>> s1 = set([1, 2, 3])
>>> s2 = set([2, 3, 4])
>>> s1 & s2
{2, 3}
>>> s1 | s2
{1, 2, 3, 4}

不可变对象

对于可变对象,比如list,对list进行操作,list内部的内容是会变化的,比如:

>>> a = ['c', 'b', 'a']
>>> a.sort()
>>> a
['a', 'b', 'c']

而对于不可变对象,比如str,对str进行操作:

>>> a = 'abc'
>>> a.replace('a', 'A')
'Abc'
>>> a
'abc'

函数

调用函数

调用abs函数:

>>> abs(100)
100
>>> abs(-20)
20
>>> abs(12.34)
12.34

而max函数max()可以接收任意多个参数,并返回最大的那个:

>>> max(1, 2)
2
>>> max(2, 3, 1, -5)
3

数据类型转换

Python内置的常用函数还包括数据类型转换函数,比如int()函数可以把其他数据类型转换为整数:

>>> int('123')
123
>>> int(12.34)
12
>>> float('12.34')
12.34
>>> str(1.23)
'1.23'
>>> str(100)
'100'
>>> bool(1)
True
>>> bool('')
False

函数名其实就是指向一个函数对象的引用,完全可以把函数名赋给一个变量,相当于给这个函数起了一个“别名”:

>>> a = abs # 变量a指向abs函数
>>> a(-1) # 所以也可以通过a调用abs函数
1

定义函数

我们以自定义一个求绝对值的my_abs函数为例:

def my_abs(x):
if x >= 0:
return x
else:
return -x

返回多个值

比如在游戏中经常需要从一个点移动到另一个点,给出坐标、位移和角度,就可以计算出新的新的坐标:

import math

def move(x, y, step, angle=0):
nx = x + step * math.cos(angle)
ny = y - step * math.sin(angle)
return nx, ny

然后,我们就可以同时获得返回值:

>>> x, y = move(100, 100, 60, math.pi / 6)
>>> print(x, y)
151.96152422706632 70.0

函数的参数

位置参数

我们先写一个计算x*x的函数:

def power(x):
return x * x

当我们调用power函数时,必须传入有且仅有的一个参数x:

>>> power(5)
25
>>> power(15)
225

现在,如果我们要计算x3怎么办?可以再定义一个power3函数,但是如果要计算x4、x5……怎么办?我们不可能定义无限多个函数。

你也许想到了,可以把power(x)修改为power(x, n),用来计算xn,说干就干:

def power(x, n):
s = 1
while n > 0:
n = n - 1
s = s * x
return s

对于这个修改后的power(x, n)函数,可以计算任意n次方:

>>> power(5, 2)
25
>>> power(5, 3)
125

递归函数

举个例子,我们来计算阶乘n! = 1 x 2 x 3 x … x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x … x (n-1) x n = (n-1)! x n = fact(n-1) x n

于是,fact(n)用递归的方式写出来就是:

def fact(n):
if n==1:
return 1
return n * fact(n - 1)

上面就是一个递归函数。可以试试:

>>> fact(1)
1
>>> fact(5)
120
>>> fact(100)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463976156518286253697920827223758251185210916864000000000000000000000000

上面的fact(n)函数由于return n * fact(n – 1)引入了乘法表达式,所以就不是尾递归了。要改成尾递归方式,需要多一点代码,主要是要把每一步的乘积传入到递归函数中:

def fact(n):
return fact_iter(n, 1)

def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。